EV Technology for Specialty Transportation
High-Energy Battery Development for Light to Heavy Duty Applications
June 24-25, 2019
Hybrid and Zero-emission EV’s for light-to-heavy duty transportation applications present great commercial opportunities for advanced high-energy batteries. Battery requirements vary with the application and offer viable alternatives for multiple
technologies. In this track, we will discuss the development of hybrid and electric vehicle battery systems and the latest developments in advanced batteries to be commercialized within this transportation battery market while assessing consumer demand,
competing technologies, and overcoming the challenges to commercialization.
Final Agenda
ROOM: WINDSOR COMPLEX
Monday, June 24
12:30 pm Symposia Registration
1:30 Chairperson’s Opening Remarks
Leslie Goodbody, Engineer, Innovative Heavy-Duty Strategies, Mobile Source Control Division, California Air Resources Board
1:35 Advancing Zero-Emission Technology in Heavy-Duty Trucks, Buses, and Cargo Handling Equipment – A California Imperative
Leslie Goodbody, Engineer, Innovative Heavy-Duty Strategies, Mobile Source Control Division, California Air Resources Board
Heavy-duty vehicles and off-road equipment are responsible for a significant portion of California’s particulate, smog-forming, and climate change emissions, and for causing disproportionate health impacts to communities near the ports and along
freight corridors. This talk will provide an overview of plans, strategies, and regulatory efforts underway to reduce emissions in heavy-duty and off-road vehicle fleets. It will cover CARB’s programs, such as Cap-and-Trade, Community Air Protection
Program and Volkswagen, that provide funding for projects that spur clean and zero-emission technology innovation and commercialization.
1:55 Toyota Motor North America’s Project Portal Class 8 Heavy Duty Hydrogen Fuel Cell Electric Vehicle
Scott Friedman, Senior Engineer, Research & Development, Toyota’s Project Portal, Toyota North America
Toyota Motor North America, including its partners Kenworth and the Port of Los Angeles, are working to push the envelope of zero emission class 8 heavy duty shore-to-store (drayage) trucking. With currently two trucks on the road and another ten coming
by the middle of 2020, Project Portal is no longer just a proof of concept. Toyota will discuss Project Portal’s mission, design concept and its application of high-power batteries which supplement the Toyota Mirai’s Fuel Cell Stacks.
2:15 Overcoming the Challenges to Heavy Duty Vehicle Electrification – TransPower’s ZEV/NZEV Class 8 Vehicles
Joshua Goldman, Vice President, TransPower
A reliable electric drive system for Class 8 trucks has finally been demonstrated, but challenges remain including weight, range and charging infrastructure. In addition, the affordability for fleet operators - capital costs are presently about three
times the cost of a high-end diesel truck or tractor. Critical to the commercialization of Class 8 EV trucks are OEMs, Dealers, Tier 1 Suppliers and Funding Subsidies. This presentation will address these challenges and highlight TransPower’s
solutions.
2:35 Designing, Ruggedizing, Testing, and Manufacturing Battery Systems for the Heavy-Duty Market
Thomas Blazak, Director of Test & Validation, Battery Engineering, Proterra
Reliable ruggedized high capacity battery systems that were buy America compliant did not exist with the specs that Proterra’s customers needed. In less than 2 years Proterra built a team that has designed and tested and a manufacturing line
that builds an industry leading HD battery system that has attracted the attention of multiple other HD manufacturers to the point where they are deploying the system in their HD battery electric efforts.
2:55 Refreshment Break
3:35 San Diego Metropolitan Transit System Zero Emission Bus (ZEB) Pilot Program
Michael Wygant, Director of Fleet and Facilities Maintenance, San Diego Metropolitan Transit System
MTS is currently constructing a ZEB Pilot Program that will further help the agency reduce their Greenhouse Gas Emissions (GHG). The nearly $10 million project is designed to support MTS in complying with the California Air Resources Board’s
(CARB) proposed Initiative Clean Transit (ICT) regulation. The ICT will require California transit systems to transition to ZEB technologies meeting the State’s zero emission goal of 2040. This pilot program is set to commence service
in mid-2019.
3:55 ACTIA & Toshiba Battery Pack Innovation for Transit Bus, Mining & Rail Applications
Greg Fritz, EV Unit Manager, ACTIA Corporation
The successful commercialization of clean, efficient medium and heavy duty vehicles in a large part depends upon battery packs that last the life of the vehicle. The Toshiba LTO cells have over five times the life and power of other lithium cells,
which when packaged and managed properly, last the life of the vehicle. The presentation will focus on field data from ACTIA+Toshiba battery packs in numerous demanding applications such as transit buses, mining, rail, theme park rides and
autonomous guided vehicles with special focus on hybrid, fuel cell and fast charge EV applications.
4:15 Thermal and Stress Analysis of a Battery Pack for a Light Weight Sports Car
Kaushik Illa, Global Application Specialist, e-Powertrain, Siemens PLM Software
In this presentation we would like to address how simulation would assist in minimizing the research, analysis, and experiments to analyze the behavior of battery systems where there is a need for strongly coupled resolution of flow, heat transfer,
electrochemistry and stress due to expansion and contraction during operation to provide the best possible prediction to maintain the integrity of the system and identifying potential problems at an early stage. In all, it is becoming more
vital to analyze packs and modules through simulation to capture the complexity of a thermal management at component and system level.
4:35 Prototyping and Industrialization of Solid-State Battery Technology for Performance BEV and Electric Aircraft Propulsion System Applications
Martin Talke, Associate Principal, P3 Group
The technology maturity and feasibility of mass production of solid-state battery technology is one of the greatest mind-term challenges for electric propulsion systems, both on land and in the air. After prototyping has led to the desired battery
cell design, the industrialization and production ramp-up are the next milestones before reaching series production. Together with strong partners, P3 has developed the skills to assess the feasibility of such next-generation battery production.
Lastly, the application of mass produced next-generation battery technology for high-performance powertrain systems will be considered.
4:55 Q&A
5:20 Close of Day
Tuesday, June 25
8:30 am Morning Coffee
9:00 Chairperson’s Remarks
Colin Wessells, PhD, CEO, Natron Energy
9:05 BMS Requirements for High Energy and High Power EV Battery Packs
Anil Paryani, PhD, CEO, Auto Motive Power
This presentation will focus on contactor management, current sensing, fuse management, thermal controls, bleeding and of course touch on SOC. I will also compare and contrast different approaches in the marketplace of OEMs based on public information.
This presentation will discuss a novel method to predict the parameters and useful remaining life of lithium-ion batteries used in xEVs using data pieces from the normal operation of the vehicle, without the need of a complete charge/discharge
test of the battery pack.
9:25 Ultra-high Energy Battery Performance Enabled through Metallic Li Anode Cell Designs
Michael Fetcenko, Chairman of the Board, Sion Power
Sion Power has a long history in the development of Li-Sulfur chemistry for high energy aerospace applications. We have applied our long experience with metallic Li anodes to replace sulfur with Li-Ion cathodes such as NCM, NCA and achieved 500
Wh/kg, 1000 Wh/L with long cycle life and outstanding safety. We have a technology roadmap to achieve 630 Wh/kg, 1300 Wh/L.
9:45 E-Bus Battery Market 2019
Shmuel De-Leon, CEO, Shmuel De-Leon Energy, Ltd.
10:05 Grand Opening Coffee Break in the Exhibit Hall with Poster Viewing (Sponsorship Opportunity Available)
11:00 Energy Storage Considerations for 48V Hybrid-Electric Powertrains
Andrew Burke, PhD, Research Engineer, Institute of Transportation Studies, University of California-Davis
There is considerable interest worldwide in the development of 48V hybrid-electric powertrains for light-duty vehicles of various sizes. This paper investigates in detail, based on laboratory tests at UC Davis of high-power cells of various lithium-ion
chemistries and advisor simulations of hybrid vehicles using 48V powertrains, the likelihood that the DOE targets can be met and the likely fuel economy of light-duty vehicles using 48V hybrid-electric powertrains.
11:20 Grid-Integration of Batteries as the Solution for Use of Renewable Energies
Michael Keller, Head of Coordination for Battery and Charging Technologies, Volkswagen Group R&D
How grid-integration of batteries can increase the percentage use of renewable energies for electric cars (including stationary batteries). This is an extended view of the use of batteries for the increased fluctuation of electric energy in the
grid due to higher share or renewable energy sources.
11:40 Battery Energy Storage: Advancement in Generation Applications
Haresh Kamath, Senior Program Manager for Distributed Energy Resources (DER) at the Electric Power Research Institute (EPRI)
As lithium-ion battery costs fall, increasingly large battery storage systems are being proposed for deployment. Although some of these storage systems are standalone units designed for limited duration application, others are being proposed as
support for solar, wind, gas, or nuclear generation to improve efficiency, reduce wear and tear, and to make systems more dispatchable. This presentation will discuss these developments, and potential future directions that may become possible
with lower costs and advanced storage technologies.
12:00 pm Vehicle to Grid: No Longer Theory — Real World Implementation and Lessons
Kevin Matthews, Managing Director, Sustainability Sector, National Strategies, LLC
This session will provide attendees with an understanding of the realities of V2G, including V2B. The panelist will explore the technical and policy challenges and how they are met; the economic possibilities, and in some cases, lack thereof;
and the changes needed to expand the reality. The session will also discuss the importance of knowing all the stakeholders and how to engage them.
12:20 Q&A
12:40 Networking Lunch
1:35 Dessert Break in the Exhibit Hall with Poster Viewing (Sponsorship Opportunity Available)
2:35 Chairperson’s Remarks
Haresh Kamath, Senior Program Manager for Distributed Energy Resources (DER) at the Electric Power Research Institute (EPRI)
2:40 Wireless Inductive Charging Systems for Heavy Duty Applications
Michael Masquelier, CEO, CTO, Wave
WAVE’s inductive charging systems of 50 kW and 250 kW, currently powering buses on routes throughout the U.S., are the nation’s only solutions to have successfully undergone multiple rigorous commercial deployments. Today, WAVE has
50 kW commercial deployments at six U.S. locations. This technology has demonstrated the capability to develop and integrate high power charging systems onto heavy-duty electric vehicles.
3:00 Energy Storage Systems Based on Prussian Blue Batteries for EV Fast Charge Support
Colin Wessells, PhD, CEO, Natron Energy
Fast charging minimizes downtime for fleet vehicles and mitigates range anxiety for passenger vehicles. However, the grid may not provide adequate capacity for fast charging without costly upgrades, and high demand charges threaten to make fast
charging prohibitively expensive. This presentation considers the value proposition of energy storage systems for demand charge management at fast charging stations. Optimally sized and dispatched storage reduces stations’ grid tariffs
by 30% or more.
3:20 Extracting Value from Second-Life Electric Vehicle Batteries
Na Jiao, Technology Analyst, IDTechX
Recycling retired batteries is still at a cost today and entails extra energy and potential pollution. Repurposing a second-life for those retired but still capable batteries in less-demanding applications such as stationary energy storage, on
the other hand, could potentially bring tremendous value to a wide range of stakeholders in the automotive and energy sectors. Insights into the market potential of second-life electric vehicle batteries (a ten-year forecast), along with the
markets and applications, existing industrial implementations, value chain as well as innovative business models for second-life batteries will be discussed.
3:40 A Sustainable Perspective for Lithium-ion Battery Recycling
Benoit Couture, President, Lithion Recycling
As electric vehicles are getting more and more popular in the public transportation segment, there is a need to implement a sustainable solution for the recycling of spent lithium-ion batteries. Fleet operators are at the front line to impact
positively the end-of-life management of their batteries.
4:00 Q&A
4:20 Networking Reception in the Exhibit Hall with Poster Viewing
5:25 Close of Symposium